Self‐Assembled Biomolecular 1D Nanostructures for Aqueous Sodium‐Ion Battery
نویسندگان
چکیده
Aqueous sodium-ion battery of low cost, inherent safety, and environmental benignity holds substantial promise for new-generation energy storage applications. However, the narrow potential window of water and the enlarged ionic radius because of hydration restrict the selection of electrode materials used in the aqueous electrolyte. Here, inspired by the efficient redox reaction of biomolecules during cellular energy metabolism, a proof of concept is proposed that the redox-active biomolecule alizarin can act as a novel electrode material for the aqueous sodium-ion battery. It is demonstrated that the specific capacity of the self-assembled alizarin nanowires can reach as high as 233.1 mA h g-1, surpassing the majority of anodes ever utilized in the aqueous sodium-ion batteries. Paired with biocompatible and biodegradable polypyrrole, this full battery system shows excellent sodium storage ability and flexibility, indicating its potential applications in wearable electronics and biointegrated devices. It is also shown that the electrochemical properties of electrodes can be tailored by manipulating naturally occurring 9,10-anthroquinones with various substituent groups, which broadens application prospect of biomolecules in aqueous sodium-ion batteries.
منابع مشابه
Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery
In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...
متن کاملSelf-assembled multivalent carbohydrate ligands.
Materials that display multiple carbohydrate residues have gained much attention due to their potential to inhibit or modulate biological multivalent interactions. These materials can be grouped accordingly to the way they are prepared, as unimolecular or as self-assembled systems. Both systems take advantage of the fact that multivalent interactions have significantly higher binding affinity t...
متن کاملExploring the self-assembly of glycopeptides using a diphenylalanine scaffold.
Diphenylalanine, a key building block for organic nanotechnology, forms discrete, rigid and hollow nanotubes that are assembled spontaneously upon their dilution from organic phase into aqueous solution. Here we report the efficient preparation of several S-linked glycosylated diphenylalanine analogues bearing different monosaccharide, di-saccharide and sialic acid residues. The self-assembly s...
متن کاملA general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish.
Assembling nanoparticles into one-dimensional (1D) nanostructures with precisely controlled size and shape renders the exploration of new properties and construction of 1D miniaturized devices possible. The physical properties of such nanostructures depend heavily on the size, chemical composition, and surface chemistry of nanoparticle constituents, as well as the close proximity of adjacent na...
متن کاملSelf-assembly and conductivity of hydrogen-bonded oligothiophene nanofiber networks.
Symmetric oligothiophene derivatives containing hydrogen bond forming segments create self-supporting organogels consisting of self-assembled 1D nanostructures at low concentrations. Hydrogen bond formation and π-π stacking were both found to be crucial for the formation of conductive supramolecular networks of 1D nanostructures.
متن کامل